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Abstract. We explain the arguments in support of the Berry–Robnik (1984J. Phys. A: Math.
Gen. 17 2413) picture of the energy-level statistics in the asymptotic strict (far) semiclassical
limit of sufficiently smallh̄, where the entire energy spectrum can be represented as a statistically
independent superposition of regular and irregular level sequences, the regular ones obeying the
Poissonian statistics and the irregular ones the RMT statistics (GOE or GUE). We generalize
the results to describe not only the level spacing distribution, the number variance and the delta
statistics, but also arbitraryE(k, L) statistics (= the probability to findk levels inside an interval
of lengthL—after unfolding). Very useful and effective approximations forE(k, L) are described.
We demonstrate very clearly that this regime is excellently described by this picture fork as high
asLmax, the outer energy scale, even when taking into account the regular component and only one
(the dominant) chaotic component. This we show numerically for the compactified standard map
and for the quartic 2D billiard.

The generic classical Hamiltonian dynamical systemsH(q,p) with only a few (N ) degrees of
freedom are neither integrable nor completely chaotic (ergodic), but are somewhere in between,
for they have a divided phase space comprised of regular regions (covered by invariant tori)
and chaotic regions (where the classical orbits possess positive largest Lyapunov exponents
and are dense inside). The picture is very well described by the KAM Theory. We still do
not have a proof, even for a single nontrivial dynamical system, that the invariant measure of
the chaotic component is indeed positive—the so-calledcoexistence problem(Strelcyn 1991),
although in physics we have little doubt that this is true. Recently we have discussed this
and related problems and have shown how to calculate, also numerically, the measure of the
chaotic component (Prosen and Robnik 1998).

We do have strong evidence that classically integrable systems exhibit Poissonian spectral
statistics (Robnik and Veble 1998), and that the classically ergodic systems have statistical
properties of random matrix theory (RMT), either GOE or GUE, depending on whether the
system has or does not have an antiunitary symmetry, respectively. The latter statement
is known as the Bohigas conjecture (Bohigaset al 1984). An excellent review covering a
wide spectrum of closely related problems in quantum chaos has been recently published by
Weidenm̈uller and coworkers (Guhret al1998). The above classes are the so-calleduniversality
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classes (of spectral fluctuations), as their behaviour does not contain any free parameter. They
emerge, as a phenomenon, only after eliminating the specific features of a system under study,
above all after performing the unfolding procedure. This is done by reducing the spectrum in
such a way that the mean level spacing is equal to one everywhere, which can always be done,
in the leading order, by using the Thomas–Fermi rule for the mean density of energy levels†.

The question of the spectral statistics of intermediate regimes has been addressed for the
first time in (Robnik 1984), where a continuous transition in a KAM-type billiard (Robnik 1983)
from Poisson to GOE has been demonstrated numerically with increasing deformation of the
circle billiard. Just a few months later the theory of spectral statistics in such an intermedite
regime was published by Berry and Robnik (1984), derived by analysing the level spacing
distributionP(S). (Qualitatively, the idea goes back to the work of Percival (1973).) This
picture rests upon the assumption of the statistically independent superposition of Poissonian
sequences, associated with the regular regions (invariant tori), labelled byj = 1, and the
GOE/GUE sequences, associated with the chaotic regions, labelled byj = 2, 3, . . . , m. It
was realized already in that work that the nice and most convenient mathematical object for
the level spacing analysis is the gap probabilityE(0, L), by definition equal to the probability
that in an interval of lengthL there is no level. We haveP(S) = d2E(0, S)/dS2 (see below
and Haake 1991, Mehta 1991 and Aurichet al 1997). Namely, it is the gap probability that
factorizes under the statistically independent superposition of level sequences (see below).
Later an analogous analysis was performed by Seligman and Verbaarschot (1985) for the
sigma statistics (number variance) and the delta statistics, which have the additivity property.
Recently, it has been emphasized by Steiner and coworkers (Aurichet al1997) that theE(k, L)
statistics are not only quite fundamental but also very convenient in the numerical work, in
general. By definition,E(k, L) is the probability of finding preciselyk levels in an interval
of lengthL (after unfolding). We shall see below that they are indeed most natural statistical
measures to analyse in the mixed systems. Moreover,P(S) and the number statistics and thus
also the delta statistics can be simply expressed in terms ofE(k, L) statistics (Robnik 1998,
Aurich et al 1997).

The Berry–Robnik picture is based on the so-called principle of uniform semiclassical
condensation, which states that the Wigner functions of the stationary eigenstates in the strict
semiclassical limit ¯h → 0 become uniformly extended on the classical invariant objects
supporting the quantal eigenstates, as implicit in Berry (1977, 1983) and Robnik (1988). A
recent review was published by Robnik (1998), and a compact comment regarding this topics
was published in (Robnik and Prosen 1997). The principle indeed implies ‘no interaction
between different level sequences’ and thus their statistical independence. The approach to
this asymptotic regime in relation to localization phenomena of chaotic eigenstates and to the
implied phenomenon of fractional power-law level repulsion has been studied in (Prosen and
Robnik 1993, 1994a, b).

Thus, it is important to knowthe relative invariant (Liouville) measureof chaotic and
regular eigenstates because the Hilbert space of a mixed Hamiltonian system is split into
regular and irregular eigenstates, in the strict semiclassical limit, precisely in proportion to
the classical invariant measure of the integrable component (invariant tori) and of the irregular
components.

† There might very well be an additional, so-far overlooked universality class of semi-Poissonian statistics, recently
discussed by Bogomolnyet al (1998), which, seems to appear in the systems which contain chaotic orbits dense in the
phase space but not having invariant measure one (i.e. they are topologically transitive but not metrically transitive and
thus non-ergodic). One example of such systems is the rational polygon billiard, which is pseudo-integrable, having
invariant surfaces of genus higher than one (Berry 1983, Richens and Berry 1981).
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The invariant Liouville measure of a subsetω of the energy surface is equal to

ρ(ω) =
∫

dNq dNp δ1(E −H(q,p))χω(q,p)∫
dNq dNp δ1(E −H(q,p)) (1)

whereχω(q,p) is the characteristic function on the setω, δ1(x) is the one-dimensional Dirac
delta function,N is the number of degrees of freedom,E is the energy andH(q,p) is the
Hamiltonian. The relative invariant Liouville measure of the regular components will be
denoted byρ1, and the measures of chaotic components (ordered in sequence of decreasing
measure) byρ2, ρ3, . . . , ρm, wherem = ∞ for N = 2 andm = 2 for N > 3, since in case
of three or more degrees of freedom we have the phenomenon of the Arnold web, which is
dense in the phase space, and thus there is, strictly speaking, only one (but very complex)
chaotic component on the energy surface. In (Prosen and Robnik 1998) we have explained
how to calculateρ1, ρ2, ρ3, . . . . Of course by the assumption of normalization (of the relative
measure and of the level density) we haveρ1 + ρ2 + · · · + ρm = 1.

Assuming the above-mentioned absence of correlations pairwise betweenm spectral
sequences, due to the fact that they have disjoint supports and thus do not interact, where
m is infinite forN = 2 and 2 forN > 3, the spectral statistics can be written as (Robnik 1998)

Emixed(k, L) =
∑

k1+k2+...+km=k

m∏
j=1

Ej(kj , ρjL) (2)

which is a most general manifestation of Berry–Robnik (1984) picture. HereEj(k, L) is
EPoisson(k, L) for j = 1, andERMT(k, L) for j = 2, 3, . . . , m. The former is equal to

EPoisson(k, L) = Lk

k!
exp(−L) (3)

whilst the latter can be found in Mehta (1991), namely in the form of numerical tables for
k = 0–7 and in (Aurichet al 1997) in the form of asymptotic Gaussian formulae fork > 8,
namely

EGOE(k, L) ≈ 1√
2πα(L)

exp

(
− (L− k)

2

2α(L)

)
(4)

whereα(L) = 62
GOE(L) , which is precisely the number variance (number statistics). In fact,

this same Gaussian asymptotic formula applies also to the Poissonian case (3), where we must
useα(L) = L instead.

The picture is based on the reasonable assumption that (after unfolding) the mean density
of levels in thej th sequence of levels isρj , simply applying the Thomas–Fermi rule of
filling the phase space volume with elementary cells of size(2πh̄)N in the thin energy shell
embedding the corresponding subsetω. Therefore, please note that the second argument of
Ej(k, L) is weighted precisely by the classical relative invariant measure of the underlying
invariant component. Also, if there are several regular (Poissonian) sequences they can be
lumped together into a single Poissonian sequence (which we traditionally label by 1 with
relative invariant measureρ1). It is easy to show (Robnik 1998), that ifα1, α2, . . . , αl are
positive real numbers andβ being their sum,β = α1 + α2 + · · · + αl , then for allk, andL,

EPoisson(k, βL) =
∑

k1+k2+···+kl=k
EPoisson(k1, α1L)EPoisson(k2, α2L) . . . EPoisson(kl, αlL) (5)

by simply using the definition ofEPoisson(k, L) of equation (3). Thus, we have some kind
of a central limit theorem, saying that the statistically independent superposition of Poisson
sequences results in a Poisson sequence, such that the total density of Poissonian levelsβ is
equal to the sum of the partial level densitiesαj , j = 1, 2, . . . , l.
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Figure 1. E(k, L) statistics, 06 k 6 5, of the compactified standard map for parametera = 1.8.
Numerical statistics, obtained as averages over 20 spectral samples (m = 7991, . . . ,8000, both
parities) ofm ≈ 8000 levels each, are shown as continuous curves (see legend), while theoretical
results for the classical parameterρ1 = 0.27 (based on the table ofEGOE(k, L) from Mehta (1991))
are shown as point symbols.

Now we shall apply the general theory (2) for three two-dimensional systems (N = 2),
namely the compactified standard map (Prosen and Robnik 1994a, b) with the kick parameter
a = 1.8 anda = 1.3, and for the quartic billiard (Prosen 1998) witha = 0.04, and in all cases
we shall take into accountonly one chaotic component, labelled byj = 2. It is quite typical
in strongly pronounced KAM-type regimes that the dominant (largest) chaotic component is
by orders of magnitude, say factor 100, larger than the next (subdominant) one. Thus, in such
cases we expect that this approximation will lead to a good description of the level statistics
of the mixed system. Indeed, this is confirmed excellently in our results, described below. We
assumeρ1 + ρ2 = 1. For the details of the definition of these model systems see (Prosen and
Robnik 1994a, b, Prosen 1998).

Form = 2 we get the simple formula

Emixed(k, L) =
k∑
l=0

EPoisson(l, ρ1L)ERMT(k − l, ρ2L) (6)

where the PoissonianEPoisson(k, L) is known exactly in (3) whilstERMT(k, L) is taken from
the book of Mehta (1991) (numerical tables fork 6 7) and its asymptotic formulae fork > 8
are given in (4). Also, it should be noticed that if we use the asymptotic formulae (4) for
sufficiently largek, for both componentsj = 1 andj = 2, then the final result, after replacing
the discrete convolution (6) by a continuous one (summation overk→ integration overk), is
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Figure 2. As figure 1, but fora = 1.3 andρ1 = 0.37.

again a Gaussian:

Emixed(k, L) ≈ 1√
2πγ (L)

exp

(
− (L− k)

2

2γ (L)

)
(7)

whereγ (L) = α1(ρ1L) + α2(ρ2L), andα1(L) is the number variance of the Poissonian
sequencej = 1 andα2(L) is the number variance of the chaotic sequencej = 2, so thatγ (L)
is the number variance of the total spectrum.

In figure 1 we show the results for the compactified standard map ata = 1.8. Each spectral
stretch has 8000 levels, and we have averaged over 20 such stretches, so that in the statistics
about 160 000 objects were used. The precise theoretical value has been calculated (at discrete
points) using the above approach (Mehta 1991) and it is clearly seen that the agreement is
just perfect within the graphical resolution. Here we used as the input parameterthe classical
value ofρ1 = 0.27, rather than making the (nonlinear) least-square fit and comparing the
extracted quantal value with the classical one. Of course, we also looked at the sensitivity of
this graph with respect to the value ofρ1, by changing it up and down by 0.01, resulting in a
small disagreement (deviation) of about 3%. In figure 2 we show the same quantities for kick
parameter equal toa = 1.3 andρ1 = 0.37. Here a small disagreement is seen, which can
be understood not necessarily in terms of the wrongρ1, but in terms of not being far enough
in the semiclassical limit see (Prosen and Robnik 1994a, b). Nevertheless, the agreement can
still be considered as very good.

In figure 3 we show the same as in figure 1, but now for higher values ofk = 15–20. The
agreement is excellent, even when using the asymptotic formulae (4). In figure 4 we show the
same objects as in figure 3, but now in the (semi)logarithmic scale, showing very clearly that
the agreement is excellenteven in the tailsof E(k, L) where its value is small and one would
expect the error to become comparable to the value of the function itself. In figure 5 we show



1868 T Prosen and M Robnik

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

8 10 12 14 16 18 20 22 24 26 28

E
(
k
,
L
)

L

k=15
Theory
k=16

Theory
k=17

Theory
k=18

Theory
k=19

Theory
k=20

Theory

Figure 3. As figure 1, but for 156 k 6 20.
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Figure 4. As figure 3, but in semi-logarithmic scale in order to exhibit the tails.
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Figure 5. E(k = 18, L) for the compactified standard map ata = 1.8 (full curve) is compared
with the limiting Poisson (short chain curve) and GOE (long chain curve) statistics, and with the
two theoretical curves forρ1 = 0.27, namely with ‘exact’ theory (equation (6)) (broken curve),
and with Gauss approximation (equation (7)) (dotted curve).

E(k = 18, L) for the same system, with the kick parametera = 1.8, compared with the exact
theory, the Gaussian approximations (4), the Poisson formula (3) and the GOE result (4).

With increasingk andL we, of course, expect larger deviations from the theory, for two
reasons: we approach the finite size of our spectral stretches and also the outer energy scale,
Lmax= h̄/(T01E), discovered by Casatiet al (1985) and Berry (1985), and fully determined
by the shortest classical periodic orbit in the system with periodT0 and the mean level spacing
equal to1E. Indeed, this can be observed in figure 6, where we plot the same quantities as in
figure 1 but now fork = 88, 92, 96 andk = 100. The largest deviations are near the peaks of
E(k, L) curves.

In order to clearly expound these trends we went even further, up tok = 1000, where we
expect nontrivial structure ofE(k, L) as functions ofL, because we have now already entered
thenonuniversal regimewith L > Lmax≈ 1000 (see below), as shown in figure 7.

In figures 8 and 9 we show the same objects as in figure 1 but now for 5168 consecutive
levels of the quartic billiard defined and introduced in Prosen (1998), witha = 0.04. The
value ofρ1 = 0.12 has been used. The agreement is excellent in figure 8 and very good in
figure 9, but not as good as in the standard map (figures 1 and 3), which is also due to the
statistically smaller spectral samples.

At this point we must comment on the reasons for deviation of the actualE(k, L) from
the semiclassical one, (2), and more specifically (6). The main reason is that at sufficiently
largeL, beyond the outer energy scale, we reachthe nonuniversal regime, as was discovered
by Casatiet al (1985) and explained by Berry (1985) for the sigma and delta statistics. We
expect exactly the same characteristic energy scaleLmax to control the behaviour ofE(k, L),
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Figure 6. As figure 1, but fork = 88, 92, 96, 100.
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regimek > Lmax. The full curve gives the average over 20 spectral samples (m = 7991. . .8000,
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Figure 8. As figure 1, but for 5168 consecutive levels of the quartic billiard (Prosen 1998) for
a = 0.04 with sequential quantum numberN ≈ 8 000 000, and for theoretical distributions with
ρ1 = 0.12.

as could be shown by a systematic employment of Gutzwiller trace formula (Gutzwiller 1990
and references therein, also Berry 1985), but this question of course transcends the scope
and possibilities in this paper, and thus remains as an interesting, important and challenging
new project. Beyond the outer energy scale,L > Lmax, the behaviour of sigma, delta and
other statistics, includingE(k, L), as functions ofL, cannot be expected to behave universally,
and therefore we cannot expect the Gaussian approximation to be good, either for individual
subsequences or for the entire spectrum. Thus, the ‘wild’ behaviour ofE(k, L) as functions of
L in such a nonuniversal regime as, e.g., shown in figure 7, and also the deviations clearly seen in
figure 9 for the quartic billiard, is precisely due to these complications. However, qualitatively
we should explain the following. In the case of statistically indepedendent superposition of
spectra, labelled byj = 1, 2, . . . m, we find the deviation from universality for each individual
subsequence of levels forL > L

(j)
max, j = 1, 2, . . . , m, whereL(j)max is associated with individual

spectral subsequence labelled byj , and therefore is equal toL(j)max= h̄ρj /(T (j)0 1E) whereρj
is the density of levels of thej th subsequence, andT (j)0 is the period of the shortest classical
periodic orbit in thej th classical invariant component. Of course, eachT

(j)

0 certainly cannot
be smaller thanT0; in fact, it would typically be larger thanT0. Also,ρj is always smaller than
1; in fact it can be very small. In our case of the quartic billiard mentioned aboveρ1 = 0.12,
which means thatL(1)max ≈ 300 rather thanLmax ≈ 3000, and for the standard map (a = 1.8)
it is L(1)max ≈ ρ1Lmax ≈ 1000 rather than the maximal outer pseudo-energy scale which, for
them-dimensional quantum map, is estimated simply asLmax ≈ m/2 = 4000 due to the
periodicity of the quasi-energy levels. It is, however, true that at smallerρj , when it goes
to zero, the contribution of thej th subsequence to the total spectrum becomes less and less



1872 T Prosen and M Robnik

0

0.05

0.1

0.15

0.2

0.25

10 12 14 16 18 20 22 24 26

E
(
k
,
L
)

L

k=15
Theory
k=16

Theory
k=17

Theory
k=18

Theory
k=19

Theory
k=20

Theory

Figure 9. As figure 8, but for 156 k 6 20.

important, and eventually irrelevant, whatever the value ofL
(j)
max. But it is hard, at this stage,

to say more about this nonuniversality regime.
We may conclude that the Berry–Robnik (1984) picture has been fully confirmed not only

for P(S) and1(L) but in fact for allE(k, L) statistics in the three dynamical systems that
we study numerically in this paper. The theoretical arguments have been explained in detail
in the recent review (Robnik 1998), where the reasons for the correctness of this picture are
given, and also the phenomena of the deviation from the asymptotic behaviour are described
(localization of chaotic states and the fractional power-law level repulsion) for when we are not
deep enough in the semiclassical regime (not sufficiently small ¯h). The qualitative criterion for
the crossover regime (from Brody-like to Berry–Robnik) consists in comparing the classical
diffusion timescale (ergodic time) and the break time (Heisenberg time). If the latter is much
shorter than the former, localization (of chaotic states) appears and manifests itself in the
fractional power-law level repulsion and thus Brody-like behaviour. This important regime
has also been recently studied by Engelet al (1998) also by analysing the higher-order level
spacing statistics. But the ultimate asymptotic semiclassical limiting behaviour is definitely
correctly described by the Berry–Robnik picture, which is the main conclusion of this paper.
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